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STRENGTH EVALUATION FOR A WELDED JOINT WITH A THIN YIELDING 

INCLUSION OF SMALL SIZE 

A. B. Borintsev, I. Yu. Devingtal', 
Yu. A. Neoberdin, and A. V. Shvetsov UDC 539.375 

i. The strength of a welded joint depends on properties of the fusion zone, which may 
have the form of a thin layer with reduced strength and deformation properties with produc- 
tion defects, including inclusions (see, e.g., [I, 2]). The object of study in this work is 
a plane model of a welded joint (Fig. i) which is two half-planes with elasticity moduli 
E+ and E_, and Poisson's ratio v+ and ~_ joined through a thin layer of thickness 2h; the E 
and 9 of the layer material either conform with the corresponding elasticity constants of 
one of the welded materials, or they are intermediate between them (e.g., average). In a 
certain area the layer is interrupted by an extraneous, relatively yielding, thin inclusion 
with elasticity modulus E 0. In the Oxy coordinate system shown in Fig. 1 the inclusion 
occupies the region IYl ! h0g(x), where a is half the inclusion length, h 0 is half the 
average inclusion thickness (h 0 << a), and g(x) is a dimensionless shape function for the 
inclusion whose average value in the section from -a to +a equals unity, i.e., [g(x)] a = i. 

Loading in the model being considered is accomplished at infinity with stress 
a~ = pf(x), where p is average stress in the section from -a to +a of axis x, and f(x) is a 
function of stress distribution inhomogeneity so that [(f(x)] a = I. 

By a relatively yielding inclusion we understand one which leads to positive stress 
concentration at its ends in the thin layer. The thin layer simulates the fusion zone with 
reduced (compared with the materials being welded) mechanical properties. Therefore, sources 
for the start of failure are hypothetically assumed to be parts of the layer adjacent to the 
ends of the inclusion where there is an unfavorable combination of a high stress level with 
a low level of strength and deformation properties of the layer metal. 

The aim of this work is determination of the critical value of applied load p for 
small inclusions which are often encountered in engineering practice, and estimation of their 

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 146-153, July-August, 1986. Original article submitted June 4, 1984. 

618 0021-8944/86/2704-0618512.50 �9 1987 Plenum Publishing Corporation 



Fig. i 

effect on reducing the strength of the welded joint, which has not been studied very much. 

2. Thin yielding inclusions in a homogeneous material have been studied within the 
framework of the plane problem of linear elasticity theory in a number of works (see, e.g., 
[3-6]). In these works use has been made of a method involving breaking down boundary 
conditions for the inclusion boundaries at axis x and reducing the original problem of the 
inclusion to the corresponding problem of a crack whose opposite sides are loaded by normal 
stresses q(x), connected with separation (opening) of the crack sides 6(x) = v+(x) - v-(x) 
by a linear relationship, which for the elastic inclusion in Fig. 1 has the form 

q(x) = %~(x)-{- EoS(x)/2hog(x), Ix I < a, ( 2 . 1 )  

where o0~(x) are initial stresses in the inclusion presented in the form of their derivative 
of the average value o 0 on dimensionless function ~(x) satisfying the condition [~(x)] a = 1 
(initial stresses may for example be production stresses which develop as a result of the 
difference in linear expansion coefficients for the inclusion and the metal matrix). 

This method of substituting an inclusion by a crack makes it possible to determine 
stress intensity factors K I at the ends of the inclusion and then to use linear fracture 
mechanics in order to evaluate critical values of applied load p. On the other hand, this 
approach makes it possible to change over with prescribed radii of curvature for the ends 
of the inclusion p from stress intensity factors to concentration factors K t = 1 + 2KI/p/~p 
and then to use classical strength theory in order to evaluate critical values of p, How- 
ever, it is easy to demonstrate that both of these approaches applied to an inclusion 
with small characteristic dimensions do not give correct results. For example~ it follows 
from [4] for an elliptical inclusion with a shape function g(x) = (4/~) /i - x2/a 2 (Ixl ! a) 
that linear fracture mechanics only operates with a > K~c/~O ~ (I - k) ~, where Kic and o t are 

material fracture toughness and strength at the end of the inclusion, and the effective 
stiffness of the inclusion k = (~/4)(i - ~2)(a/h0)(E0/E) should be less than unity, but the 
concentration factor K t = 1 + (~/4)(i - k)(a/h0) calculated from K I does not depend on 
inclusion dimensions a and h with a proportional change in them, and it does not make it 
possible to consider the scale factor. 

The difficulties mentioned are similar to those encountered in crack theory, where with 
the aim of overcoming them the series of approaches suggested is based on considering non- 
linear effects in material behavior at the crack ends; in particular, crack models with 
thin zones of irreversible strains. Instead of an original crack with length 2a, an imaginary 
crack with increased length 2b is studied in which the resistance of the selected material 
is replaced by the action of stresses q(x) applied to its opposite sides. In the Leonov- 
Panasyuk approach [7] stress q(x) is assumed to be constant and is governed by the strength 
of a thin zone. The local failure criterion in [7] is assumed to be reaching a crack 
opening at points x = !a of a certain critical value 6c, which is assumed to be a material 
constant. Unfortunately, this approach may not entirely overcome the limitations on crack 
length since in order for it to be correct it is necessary that 2a is at least less than 
6c" For application to finer defects it is apparently necessary to give up the assumption 
that 6 c is a material constant, and to assume that it depends on defect size. 

619 



The least complication of the Leonov-Panasyuk approach is the assumption about the pre- 
sence of a linear relationship between stress q(x) and separation 6(x) of imaginary crack 
sides in supplementary areas. In the case when it is assumed that q(x) decreases with in- 
creasing 6(x); for example, by the equation 

q(x) = en -- MS(x)/2h~ (2 .2 )  

where o t and M are weakened material strength and modulus in the thin zone, then as was first 
demonstrated in application to large cracks [8], qualitatively new results are obtained 
displaying the absence of a necessity for prescribing any failure criterion at the start. 
Some additional information about this approach is given in[9]. The possibility of using 
this approach for a small crack has been demonstrated in [i0]. 

In present work relationship (2.2) is used in order to describe the behavior of areas 
of the fusion zone adjacent to the ends of a thin inclusion, which assumes two things. 
First, in the vicinity of the inclusion ends there is at first such a density of microdefects 
that their further development during deformation reduces the strength of the fusion zone 
to a greater degree than it may be increased as a result of strengthening for continuous 
(undamaged) material between microdefects. Second, during deformation under special loading 
conditions, loading of microdefects mayproceed stably up to complete material separation 
along the fusion zone, which corresponds to a smooth reduction in the strength of this 
material from the original ultimate strength a t to a zero value, i.e., its deformation loss 
of strength. An experimental study of the effect of deformation loss of strength for the 
fusion zone is possible, but only with very rigid loading conditions and control for dis- 
placements 6 of its boundaries (see, e.g., [Ii]). Under actual loading conditions for 
standard specimens in standard test machines, sections of strength loss in deformation dia- 
grams for the layer, due to excess energy applied to it (compared with that which it may ab- 
sorb), cannot be entirely stably realized, and it breaks before its strength q(x) decreases 
to zero. Nonetheless, it is necessary to draw from the overall deformation diagram, as is 
potentially possible, that there corresponds an increase of 6 in (2.2) up to a limiting value 
6p = 2hot/M with which there is a return of stress q to zero. The degree of actual realiza- 
tlon of this section of the deformation diagram may be found in the course of solving the 
problem on the basis of determining conditions for the existence and uniqueness of its 
solution by the method in [8, 9]. Difficulties of experimental study of the strength loss 
section and its modulus M may be avoided by means of the well-known approach (see, e.g., 
[12, 13]) when the area beneath the overall deformation diagram equals energy 27 expended in 
forming two new separation surfaces, which in turn is connected with fracture toughness 
Klc. For (2.2) this approach gives an estimate 

hiM = (1 '  ~)(KI~/~t)~IE, (2 .3 )  

where Klc is fracture toughness for the fusion zone of a welded joint. 

3. In order to solve the problem being considered for an actual inclusion of length 
2a together with zones of layer weakening, it is substituted by an imaginary crack of 
length 2b = 2a + 2d with application to its edges of loads S(x) = pf(x) - q(x). The problem 
is assumed to be symmetrical relative to the y-axis, which makes it possible to limit con- 
sideration to one half-plane x ~ 0. Loads q(x) are found in accordance with (2.1) with 
0 < x < a and with (2.2) with a < x < b. From solution of the problem for a crack at the 
interface of two elastic materials i~ is well known that existence of a difference in elas- 
ticity properties for the composite plane leads to a physically incorrect phenomenon of 
stress and strain oscillation at the crack ends [14, 15]. However, these phenomena are 
concentrated in a very small area of the crack tips, and in order to obtain a physically 
correct solution they may be ignored (see, e.g., [12]). in this case the expression for 
crack side separation relative to dimensionless variable g = x/b is obtained from the 
results in [15] in the form 

i 

4mlb f S 8(~)=-~ 3 ( t )g (~ , t )d t ,  0 ~ < ~ 1 ,  (3.1) 
0 

w h e r e  K(~,  t) = l n l ( ] / t  - -  ~ + ] / t  - - t ~ ) l ( V l  - -  ~ - -  ] / t  - .  t2)l �9 

2m I m+ (1 + v_) m_ (t + v + ) .  
E~ -- ~• (i + v+) + E+ (i + v_) i 
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m+ = 1 -- v+2 with plane strain and m+_ = 1 with a generalized plane stressed state. 

Substitution in (3.1) of relationships (2.1) and (2.2), taking account of (2.3), makes 
it possible to obtain an integral equation relating to dimensionless displacements w($) = 
6(~)(~Ez/4m:ota) : 

b k u.~ K (~, t) w(~) + ~ o w , - , ~ d t - - a o  w(t)K(~,t)dt  = (3.2) 
0 a/b 

= - -  Fo (~) + (P/Ot) F1 (~) - -  (%f6t) F~ (~), 0 ~< g ~< 1, 

where 

1 1 

alb o 
a/b 

0 

k0 = 2mzE0a/~E1h0 is inclusion effective stiffness; a0 = 2a/~l c is inclusion effective size; 

I c (i - ~ = v2)E2Kic/mtEo t is relative crack resistance of the layer. 

In order to establish the correspondence betwen unknown dimension d = b - a for the 
weakened zone and load p, it is necessary to add to Eq. (3.2) a condition for the smoothness 
of imaginary crack side closing, and in fact d6(x)/dx = 0 with x = b, which, taking account 
of (2.1)-(2.3) and (3.1), relative to w(~) is written as 

a/b 1 1 
i~O ~ w (t) dt S w (t} dt ~ dt 

a/b alb 

1 a/b 
p ~ I(t) dt oo ~ ~p(t),dt 

+ V - P o -FVz? " 

+ ( 3 . 3 )  

Stresses q($) in a layer with x ~ b ($ ~ i) in the arrangement of the problem being considered 
are expressed by the equation 

f i p 2 ~ dt 
q (~)Mt = -~t / (~) + -~ ]/~2 --'-f-~-T[3-- V ~-Z_ t2 

i a/b 
! ](t) dt % !" ~(t) dt 

_ ko w (t) dt t- ao 
FVnV( -- P) 

(3.4) 

A solution of (3.2) with an arbitrary right-hand side does not always exist. Finding 
conditions for its existence is connected with finding nontrivial solutions for the corres- 
ponding homogeneous integral equation. These conditions depend on three dimensionless para- 
meters: k0, a0, and b/a. FUnction K(~, t) for variables $, t(0 < $ ! i, 0 < t < I) is 
determined positively. Therefore, with b/a = I, k0 > 0, g(t) > 0-a solution ~f i~tegrai 
Eq. (3.2) exists and it corresponds to the elastic solution. An increase in the ratio b/a 
with fixed k0 > 0 and a 0 > 0 leads to a reduction in the contribution of the first integral 
in the left-hand part of (3.2) and to an increase in the contribution of the second integral 
with a minus sign. Finally, the ratio b/a inevitably reaches a certain value k~, which is 
the least positive characteristic number at which nontrivial solutions develop for the 
homogeneous equation, and solutions do not exist for the original inhomogeneous integral 
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Eq. (3.2) with an arbitrary right-hand side of it. Subsequently, achievement of a value 
of 11 for the ratio b/a is treated according to [8, 9] as the onset of a critical condition 
corresponding to the start of a rapid failure process. 

Solution of inhomogeneous Eq. (3.2) with b/a ~ 11 may be accomplished numerically by 
using a computer. For this purpose it is necessary to approximate all integrals by finite 
sums by one or another quadratic equation, and to approximate Eq. (3.2) itself by a set of 
linear algebraic equations. The value of Ii achieved by the ratio b/a in this way is fixed 
by converting the determinant of the approximation system to zero. The following series of 
calculations is convenient. Values of parameters ko and ao which are of interest are pre- 
scribed, and the ratio b/a is assumed at first to equal unity. Solution of the approximation 
set of linear algebraic equations (3.2) is accomplished by a Gauss method, which makes it 
possible to calculate its determinant and simultaneously to obtain three solutions w0(~), 
w1(~) and w2(~) individually for each term of the right-hand part F0(~), FI(~) and Ya(~). 
From these solutions a linear combination w(~) = w0(~) + (p/ot)wl(~) + (o0/ot)w2(~) is 
formed whose substitution in condition (3.3) makes it possible to obtain an expression for 
p/o t. With given values of k0, a0, b/a, and o0/ot, it is possible to calculate parameter 
p/ot, after which solution w(g) becomes completely known. Stresses p(~) are calculated from 
it by Eq. (3.4) with ~ ~ 1 and by (2.1) and (2.2) with 0 ! ~ ! i, which may be rewritt~qin 
the form 

q ( ~ ) / t ~ t  = i - -  aow(~), a/b < ~ <~ i. 
(3.5) 

(3.6) 

At this point the first step of the calculation is complete. Then, step by step, more 
values of the ratio b/a are prescribed and calculation each time is carried out anew until 
the determinant of the approxiating system does not change sign. The q(g)/o t and p/s t 
corresponding to this instant are considered to be critical, leading to rapid weld-joint 

failure. 

4. In this work specific calculations were carried out for the case of f(x) ~ i, 
~o/~ t = 0, g(x) E i. The dimensionless range of integration from zero to unity was broken 
down into forty equal sections, in each of which the function w(~) sought was considered 
to be constant, and the integral was taken in closed form. Ratio a/b was reduced with a 
step of 0.025, which corresponded to an increase in d/a with an increasing step. Two 
values of effective inclusion size (a0 = 1 and 2) and five values of effective stiffness 
coefficient (k0 = 0, I, 2, 4, 8) were chosen for the calculations. 

Shown in Fig. 2 are curves for the distribution of relative stresses q(x/a)/o t in the 
case of a0 = 1 and k0 = 2 (i relates to p = 0.48 a t (with b/a = 1.2), and 2 relates to p = 
0.83 o t (with b/a = 1.6)]. It can be seen that stresses q are at a maximum and equal to 
a t in the end of the weakened zone at a certain distance d = b - a from the edge of the 
inclusion. With x > b they decrease rapidly, tending towards the value of applied load 
p. They also decrease on approach to the edge of the inclusion due to material strain 
weakening. At the same time, q is at a maximum in the center of the inclusion, where ~t 
are not exceeded. On approaching the edge of the inclusion they also decrease. With x = a 
stresses q undergo a break, and from the direction of the inclusion they are less than from 
the direction of the layer. The magnitude of the break depends on p, and it decreases with 
an increase in p. With other values of factors k0 and a0 the picture of q distribution re- 
mains qualitatively the same as in Fig. 2, only changing quantitatively. 

The correlation of p/o t with size of the weakened zone d/a = b/a - 1 is illustrated 
in Fig. 3 with a0 = 1 and k0 = 8; 4; 2; 0 (lines 1-5). Marked with crosses are final points 
on the curve corresponding to a return of the determinant of the approximating system to 
zero, which characterizes the onset of a critical condition. It can be seen that in spite 
of local weakening of the layer close to the inclusion ends, global curves p-d in Fig. 3, 
describing behavior of a welded joint with an inclusion as a complete system, have only 
an ascending branch. This is connected with the fact that in (3.2) parameter p is in the 
right-hand part and therefore it is assumed to be prescribed; i.e., in point of fact, a 
condition of ideally soft loading to infinity is assumed. For the condition of ideally 
rigid loading to infinity, instead of p in the right-hand part of (3.2) it would be necessary 
to substitute its expression from (3.3) and to transfer the terms obtainedrelatin~ tow(~) to the 
left-hand part of (3.2), thus excluding the possibility of controlling load. As a result of this, an 
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under these loading conditions 
of the crack is completely not 
creases gradually. Since this 
in detail. 

integral equation would be obtained with another core and the determinant of the corresponding 
approximation system would change sign a little later; i.e., curves in Fig. 3 would have a 
continuation to points marked with crosses. This case of loading is based on facts, al- 
though without particular accentuation its application to small cracks was discussed in 
[I0]. From the results of this work it follows that loss of stability for the solution 

does not occur, at least while the material in the vicinity 
weakened. In this way, load p after passing a maximum de- 
case of loading is more dangerous, it is not considered here 

The final result of these studies is critical values of p,/o t and relation of them to 
critical value of d,/a for the size of the weakened zone whose dependences on k 0 are pre- 
sented in Fig. 4, where curves 1 and 2 are dependences of d, on k0 for a 0 = 1 and 2, and 3 
and 4 are dependences of d, on k 0 with the same values of a 0. From the curves provided it 
can be seen that critical values of p, and d, are at a minimum for cracks (k 0 = 0), and 
they gradually increase with an increase in inclusion stiffness. The rate of increase for 
critical values is at a maximum with small k0, and then it gradually slows down. Critical 
loads p, in the range of values of ko being considered nowhere exceed ultimate strength s t 
for the layer in the absence of an inclusion, although they approach it from below with an 
increase in k 0. It is also noted that k 0 affects p, to a greater extent than d,, and 
conversely a0 affects d, to a greater extent than p,. 

5. In this work for calculations the case q(x) ~ 1 was selected corresponding strictly 
speaking to an inclusion of cosntant thickness. However, as is easily understood, this 
approach remains qualitatively the same as for inclusions with variable thickness 2h0g(x), 
where g(x) is a limiting positive function changing weakly along the inclusion length. In 
addition, the case g(x) ~ 1 may be considered as a first approximation for a thin inclusion 
of arbitrary shape. In this way (3.2), with any values of k 0 and a 0, always has a completely 
defined range of possible change in ratios b/a from i to 11 in which a solution exists and 
is unique, and the critical load p, corresponding to ~i is less than ot and it depends both 

on stiffness and on inclusion dimensions. All of this points to the advantages of this 
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approach compared with the well-known methods of elasticity theory and linear fracture 
mechanics. 

Given in Table 1 is dimensionless separation of imaginary crack sides atpoint x = a 
in the critical condition which is designated in terms of w, for certain values of k 0 and 
a0. From (3.5) and (3.6) with w = w, it is possible to calculate breaking stress Aq, be- 
tween the layer and the inclusion at point x = a. Calculations are also given in Table 1 
which indicate that Aq, > 0; i.e., stresses from the direction of the layer in the critical 
condition are greater than from the direction of the inclusion. Since in the inclusion it- 
self stresses are greater than zero, then this means that relationship (2.2) is never 
realized up to the end (i.e., up to 6 = 6p, when q = 0). The critical condition sets in 
before the layer material is completely weakened. Inequality Aq,> 0 is equivalent to 
inequality w... < i/(a0 + k0). Changing over to dimensional values we obtain 6... < 2ml(gt/E I) 
I c [i + m1(E~/E1)Ic/ho]. Whence it can be seen that with a reduction in inclusion size 
h0 critical opening 6, decreases, tending towards zero. Since Aq, with decreasing a0 
grows rapidly, then the actual reduction of 6, proceeds even more rapidly. Thus, the 
limitation indicated in part 2 on defect size due to 6 c in the given model is overcome as 
a result of a reduction in 6,. 

The results obtained in this work are extended to the more general case of 0 < a 0 < 
~t, #(t) E I, which may be treated as linear strengthening of an inclusion for yield 
strength g0 with strengthening modulus E0. This in no way affects d,, since go is only 
present in the right-hand part of (3.2). Therefore, curves 3 and 4 in Fig. 4 retain their 
point with the arbitrary ratio ao/a t < i. As far as q and p are concerned, it is then easy 
to understand from the right-hand part of (3.2) that they depend linearly on do~at: 

q = go + (1 . -  go/O.)qo, i~ = ~o + (~ - ag/o.)po, 

where q0 and P0 are values of q and p with a0 = 0. Hence, it follows that with an increase 
in the ratio ao/a t there is equalization of forces and stresses normalized for a t , which 
tends ever>~here towards a constant value equal to ao/o t, with go~at tending towards unity. 
Given in Fig. 3 as an example is the dependence of p on d with a0 = I, k0 = 8, and ao/a t = 
0.8. It can be seen that the weakened zone develops in the instant of reaching With force 
p a value o0, and when go is close to a t the weakened zone does not develop to a critical 
state (p,% at). The case of o0 > a t contradicts the statement of the problem considered 
here. Thus, consideration of a0 ~ 0 leads to an increase in critical loads pe with reten- 
tion of d,, and with a conservative approach it is possible to assume that a 0 = 0. 

For convenience the results obtained given in this work for critical load may be des- 
cribed with an error not more than 1% by the relationship 

p , ~ t  = ~o/~t + (1 - go /g .~ /V  t + ( ~ / 2 )  aolH + ( ~ / 2 )  4 1 ,  

in a particular case (k0 = 0, go~at = 0) coinciding the well-known relationship for crack 
theory (e.g., see [16]) obtained from the energy variation principle assuming proportionality 
for crack opening and applied load. With a0 << i, from the relationship suggested it 
follows that p, % ato In the case of infinitely thin inclusions a/h0 >> 1 and k0 >> 1 it 
is found that the critical load ceases to depend on inclusion length and it is governed b 
geometry only for its thickness. 

In conclusion it is noted that in a real deformation curve flow and strengthening sec- 
tions preceding the weakening section may be of considerable importance. However, it is 
evfdent that with the same area beneath the deformation curve an increase in it of the 
proportion of flow and strengthening sections should lead to an increase in critical load. 
Therefore, in the absence of an experimental record of the complete q-6 diagram, with 
strength a t and fracture toughness KIc characteristics of a welded joint, in order to 
obtain a more conservative estimate of critical load it is simpler to proceed from the 
idealized curve considered in this work with one loss-of-strength section described by 
relationship (2.2) drawing upon (2.3). 
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